Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code
نویسندگان
چکیده
The nature of the neural codes for pitch and loudness, two basic auditory attributes, has been a key question in neuroscience for over century. A currently widespread view is that sound intensity (subjectively, loudness) is encoded in spike rates, whereas sound frequency (subjectively, pitch) is encoded in precise spike timing. Here, using information-theoretic analyses, we show that the spike rates of a population of virtual neural units with frequency-tuning and spike-count correlation characteristics similar to those measured in the primary auditory cortex of primates, contain sufficient statistical information to account for the smallest frequency-discrimination thresholds measured in human listeners. The same population, and the same spike-rate code, can also account for the intensity-discrimination thresholds of humans. These results demonstrate the viability of a unified rate-based cortical population code for both sound frequency (pitch) and sound intensity (loudness), and thus suggest a resolution to a long-standing puzzle in auditory neuroscience.
منابع مشابه
سایکوآکوستیک و درک گفتار در افراد مبتلا به نوروپاتی شنوایی و افراد طبیعی
Background: The main result of hearing impairment is reduction of speech perception. Patient with auditory neuropathy can hear but they can not understand. Their difficulties have been traced to timing related deficits, revealing the importance of the neural encoding of timing cues for understanding speech. Objective: In the present study psychoacoustic perception (minimal noticeable differen...
متن کاملFrequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey.
Response properties of auditory cortical neurons measured in anesthetized preparations have provided important information on the physiological differences between neurons in different auditory cortical areas. Studies in the awake animal, however, have been much less common, and the physiological differences noted may reflect differences in the influence of anesthetics on neurons in different c...
متن کاملNeurophysiology and neuroanatomy of pitch perception: auditory cortex.
We present original results and review literature from the past fifty years that address the role of primate auditory cortex in the following perceptual capacities: (1) the ability to perceive small differences between the pitches of two successive tones; (2) the ability to perceive the sign (i.e., direction) of the pitch difference [higher (+) vs. lower (-)]; and (3) the ability to abstract pi...
متن کاملA Neural Substrate for Rapid Timbre Recognition? Neural and Behavioral Discrimination of Very Brief Acoustic Vowels.
The timbre of a sound plays an important role in our ability to discriminate between behaviorally relevant auditory categories, such as different vowels in speech. Here, we investigated, in the primary auditory cortex (A1) of anesthetized guinea pigs, the neural representation of vowels with impoverished timbre cues. Five different vowels were presented with durations ranging from 2 to 128 ms. ...
متن کاملHuman sensitivity to differences in the rate of auditory cue change.
Measurement of sensitivity to differences in the rate of change of auditory signal parameters is complicated by confounds among duration, extent, and velocity of the changing signal. Dooley and Moore [(1988) J. Acoust. Soc. Am. 84(4), 1332-1337] proposed a method for measuring sensitivity to rate of change using a duration discrimination task. They reported improved duration discrimination when...
متن کامل